[TP] Which molecule is more polar? ($\chi_{H} = 2.1, \chi_{B} = 2.04, \chi_{N} = 3.04, \chi_{F} = 3.98$)

- $_{0\%}$ 1. NH₃ (trigonal pyramid)
- $^{0\%}$ 2. BF₃ (trigonal planar)
 - 3. Polarity is the same

0%

CH101 A4 – Lecture 16

Today:

Chap 8:

- Electronegativity and bond character
- Bond polarity
- Molecular geometry

Next

• chap 9

Oct, 15 2019

Electronegativity

Formal charge assumes electrons between atoms are shared equally.

Unless two connected atoms are identical, sharing always favors one atom.

Electronegativity is a relative measure the tendency of an atom to attract electrons shared with another atom in a covalent bond.

Electronegativity, χ (Greek letter chi, like in "kite")

Electronegativity is a relative measure the tendency of an atom to attract electrons shared with another atom in a covalent bond.

1 H 2.1																	2 He —
3 Li 0.98	4 Be 1.57											5 B 2.04	6 C 2.55	7 N 3.04	8 O 3.44	9 F 3.98	10 Ne -
11 Na 0.93	12 Mg 1.31											13 Al 1.61	14 Si 1.90	15 P 2.19	16 S 2.58	17 Cl 3.16	18 Ar -
19 K 0.82	20 Ca 1.00	21 Sc 1.36	22 Ti 1.54	23 V 1.63	24 Cr 1.66	25 Mn 1.55	26 Fe 1.83	27 Co 1.88	28 Ni 1.91	29 Cu 1.90	30 Zn 1.65	31 Ga 1.81	32 Ge 2.01	33 As 2.18	34 Se 2.55	35 Br 2.96	36 Kr
37 Rb 0.82	38 Sr 0.95	39 Y 1.22	40 Zr 1.33	41 Nb 1.6	42 Mo 2.16	43 Tc 1.9	44 Ru 2.2	45 Rh 2.28	46 Pd 2.20	47 Ag 1.93	48 Cd 1.69	49 In 1.78	50 Sn 1.96	51 Sb 2.05	52 Te 2.1	53 I 2.66	54 Xe
55 Cs 0.79	56 Ba 0.89	57–71 1.1–1.2	72 Hf 1.3	73 Ta 1.5	74 W 2.36	75 Re 1.9	76 Os 2.2	77 Ir 2.20	78 Pt 2.28	79 Au 2.54	80 Hg 2.00	81 Tl 2.04	82 Pb 2.33	83 Bi 2.02	84 Po 2.0	85 At 2.2	86 Rn —
F	>	0		>	Cl	>	1	N	>	S	>	(C	>	Р	>	ł
3.98		3.4	4		3.16		3.	04		2.58		2.	55		2.19		2

Electronegativity, χ

Electronegativity is a relative measure the tendency of an atom to attract electrons shared with another atom in a covalent bond.

Bond polarity

The greater the electronegativity difference of two covalently bonded atoms, the more unequal the sharing of the electrons forming the covalent bond.

Bond character:	Covalent	Polar covalent	Ionic
Electronegativity difference:	≈0-0.3	≈0.4 – 2.0	≈2.1 – 4.0
Brl: $2.96 - 2.66 = 0.30$, covalent			
HCI: $3.16 - 2.1 = 1.0$, polar covalent			

NaCl: 3.16 - 0.93 = 2.23, ionic

Please keep in mind that these definitions are qualitative, since sharing is always unequal unless the bonded atoms are identical.

[TP] Which **bond** is more polar? ($\chi_{H} = 2.1$, $\chi_{B} = 2.04$, $\chi_{N} = 3.04$, $\chi_{F} = 3.98$)

33%
33%
33%
B-F
33%
Bolarity is the

3. Polarity is the same

How atoms are arranged in three dimensions around their central atom is determined by the steric number (SN) the central atom.

SN = attached atoms + lone pairs

SN = attached atoms + lone pairs

What is SN of C in CO_2 ?

SN = 2: Two attached atoms and zero lone pairs

What is the SN of O in H_2O ?

SN = 4: Two attached atoms and two lone pairs

What is the SN of N in NO_2^- ?

SN = 3: Two attached atoms and one lone pair

SN = attached atoms + lone pairs

What is the SN of B in BF_3 ?

SN = 3: Three attached atoms and zero lone pairs

What is SN of S in SF_4 ?

SN = 5: Four attached atoms and one lone pair

What is the SN of S in SF_6 ?

SN = 6: Six attached atoms and zero lone pairs

What is SN of C in CO_2 ?

SN = 2: Two attached atoms and zero lone pairs

Shape is linear, bond angle is 180°

What is the SN of N in NO_2^- ?

SN = 3: Two attached atoms and one lone pair

What is the SN of O in H_2O ?

SN = 4: Two attached atoms and two lone pairs

Shape is bent, bond angle a little less than 109.5°

What is SN of S in SF_4 ?

SN = 5: Four attached atoms and one lone pair

Shape is seesaw, bond angles are a little less than 180°, 120°, and 90°

What is the SN of S in SF_6 ?

SN = 6: Six attached atoms and zero lone pairs

Shape is octahedral, bond angles are 90°

[TP] What is the molecular shape of CIF₃?

- 13% **1**. Linear
- 13%2. Trigonal planar
- 13%3. Tetrahedral 13%
- 13% 4. Trigonal pyramidal
- ^{13%} 5. Bent
- 13%6. Seesaw 13%

 - 7. T-shaped
 - 8. None of these

